-1.0

orbital on each osmium atom directed to the center of the cluster, as proposed previously. $^{10}\,$

In hexane, 1 exhibits six infrared active CO stretches² which indicates it has a puckered (D_{2d}) rather than planar (D_{4h}) configuration in solution as well as in the solid state. The ¹³C NMR spectrum of 1 (¹³CO-enriched) in CH₂Cl₂/CD₂Cl₂ consists of two signals² even at -95 °C. This suggests that there is rapid exchange between the various puckered configurations of 1 such that the inner and outer axial carbonyls in the molecule are rendered equivalent on the NMR time scale.

Acknowledgment. We thank the Natural Sciences and Engineering Research Council of Canada and Simon Fraser University for financial support.

Supplementary Material Available: Stereoview of 1 and tables of atomic coordinates, temperature factors, and bond lengths and angles for 1 (5 pages). Ordering information is given on any current masthead page.

Hybrid Single-Electron-Transfer-S_N2 Reactions

F. G. Bordwell* and John A. Harrelson, Jr.

Department of Chemistry, Northwestern University Evanston, Illinois 60208 Received June 15, 1987

Substitution reactions of a family of seven 9-dialkylaminofluorenide ions, $9-R_2N-FI^-$, with Ph_2CHCl , $PhCH_2Cl$, and *n*-BuBr have been found to exhibit some of the characteristics of both single electron transfer (SET) and S_N2 reactions.

Evidence that nucleophilic substitution with alkyl halides occurs, at least in some instances, by a SET mechanism has been accumulating for over 20 years.¹ Several authors have suggested that SET and $S_N 2$ are extremes of a hybrid model for substitution reactions.² Eberson has used the Marcus equation to estimate, from rates of reactions and redox potentials of donors and acceptors, whether or not SET for substitution (and other) reactions is feasible.³ This approach has been used recently to provide supporting evidence for SET character in the $S_N 2$ -type substitution reactions of *t*-BuBr with the carbanion derived from 1-*N*methyl-4(methoxycarbonyl)-1,4-dihydropyridine and with anion radicals.⁴ In our laboratory the rates for $S_N 2$ reactions of remotely substituted 9-G-fluorenide ions with alkyl halides have usually been found to be linearly correlated by the Brønsted equation (log k vs pK_{HA}).⁵ When the size and/or electronic nature of G was

C. C.; DePriest, R. J. Am. Chem. Soc. 1982, 104, 6144–6146.
(2) (a) Lund, H.; Kristensen, L. H. Acta Chem. Scand. 1979, B33, 495–498. (b) Pross, A. Acc. Chem. Res. 1985, 18, 212–219. (c) Pross, A.; Shaik, S. S. Acc. Chem. Res. 1983, 16, 363–370.

(3) (a) Eberson, L. Acta Chem. Scand. 1982, B36, 533-543. (b) Eberson, L. Ibid. 1984, B38, 439-459.

(4) Lund, T.; Lund, H. Acta Chem. Scand. 1986, B40, 470-485.

Figure 1. Plot of log k_{obsd} for single-electron-transfer reactions of 9-dialkylaminofluorenide ions with 1,1,1-trifluoro-2-iodoethane in Me₂SO solution at 25 °C vs their oxidation potentials, $E_{ox}(A^-)$, in Me₂SO.

Figure 2. Plot of log k_{obsd} for substitution reactions of 9-dialkylaminofluorenide ions with benzhydryl chloride in Me₂SO solution at 25 °C vs their oxidation potentials, $E_{ox}(A^-)$, in Me₂SO.

varied, however, a scattered Brønsted plot was obtained for an S_N^2 reaction with an alkyl halide, but a Marcus-type plot of log k vs $E_{ox}(A^-)$ was linear with an SET acceptor, 1-Ts-1-NO₂-c-C₆H₁₀.⁶ A linear Marcus-type plot⁷ has now been observed for

0002-7863/87/1509-8112\$01.50/0 © 1987 American Chemical Society

^{(10) (}a) Lauher, J. W. J. Am. Chem. Soc. **1978**, 100, 5305. (b) Delley, B.; Manning, M. C.; Ellis, D. E.; Berkowitz, J.; Trogler, W. C. Inorg. Chem. **1982**, 21, 2247 and references therein.

 ⁽a) Dessy, R. E.; Pohl, R. L.; King, R. B. J. Am. Chem. Soc. 1966, 88, 5121-5124.
 (b) Dessy, R. E.; Weisman, P. H. Ibid. 1966, 88, 5124-5129.
 (c) Bilevitch, K. A.; Pubnov, N. N.; Okhlobystin, O. Yu. Tetrahedron Lett. 1968, 3465-3468.
 (d) Kormer, G. S.; Hall, M. L.; Traylor, T. J. J. Am. Chem. Soc. 1972, 94, 7205-7206.
 (e) Bank, S.; Noyd, D. A. J. Am. Chem. Soc. 1973, 95, 8203-8205.
 (f) Garst, J. F.; Barbas, J. T. J. Am. Chem. Soc. 1974, 96, 3239-3249.
 (g) Zieger, H. E.; Angres, I.; Mathisen, D. J. Am. Chem. Soc. 1976, 98, 2580-2585.
 (h) Russell, G. C.; Jawdosiuk, M.; Makosza, M. J. Am. Chem. Soc. 1979, 101, 2355-2359.
 (i) Smith, G. F.; Kuivila, H. G.; Simon, R.; Sultan, L. J. Am. Chem. Soc. 1981, 103, 833-839.
 Kuivila, H. G.; Alnajjah, M. S. J. Am. Chem. Soc. 1982, 104, 6146-6147.
 (j) Ashby, F. C. DePriset, B. J. Am. Chem. Soc. 1982, 104, 6146-6147.

⁽⁵⁾ Bordwell, F. G.; Hughes, D. L. J. Org. Chem. **1980**, 45, 3314-3320; **1983**, 48, 2206-2215. Bordwell, F. G.; Hughes, D. L. J. Am Chem. Soc. **1986**, 108, 7300-7309. Bordwell, F. G.; Clemens, A. H.; Cheng, J.-P. J. Am. Chem. Soc. **1987**, 109, 1773-1782.

Table I.	Comparison of	Rates (log	k _{obsd}) with l	Expected Ra	tes of Sin	gle-Electron	Transfer	$(\log k$	_{SET}) for	Reactions of	9-Dialkyla	minofluorenide
Ions, 9-F	N-Fl ⁻ , with Fa	CCH ₂ I, Ph	CHCl, and	PhCH ₂ Cl								

		F ₃ C0	CH ₂ I ^c	Ph ₂ C	CHCL	PhCH ₂ Cl ^g	
NR_2^a	$E_{\rm ox}({\rm A}^{-})^{b}$	$\log k_{obsd}^{d}$	$\log k_{\text{SET}}^{e}$	$\log k_{obsd}^{d}$	log k _{SET} ^e	$\log k_{obsd}^d$	log k _{SET} ^e
N N	-0.865	fast	+1.57	+0.91	+1.37	+1.35	-0.50
×	-0.805	fast	+1.11	+0.54	+0.92	+0.46	-0.99
NMe ₂	-0.660	+0.75	-0.03	-0.57	-0.17	+0.27	-2.2
N	-0.643	-0.28	-0.17	-0.57	-0.31	+0.11	-2.4
\sim	-0.598	-1.43	-0.56	-1.21	-0.66	-1.14	-2.8
$N(i-Pr)_2$	-0.485	-1.50	-1.53	-1.45	-1.61	-1.00	-3.8
	-0.438	-2.25	-1.91	-1.55	-1.99	-2.49	-4.2

^a The 9-R₂N-FIH compounds were prepared by the reaction of 9-BrFIH with the appropriate amine; pK_a data and physical properties will be reported separately. ^bMeasured by cyclic voltammetry in Me₂SO with Ag/AgI reference electrode;⁹ referenced to the aqueous standard hydrogen electrode (SHE) by subtracting 0.125 V. ${}^{c}E_{rd} = 0.4 \times (-1.425) = -0.57$; $\lambda = 60.10 \ ^{d}$ Measured spectrophotometrically by monitoring the disappearance of 9-R₂N-Fl⁻ ion absorbance.⁵ Calculated by using an equation derived from the Marcus equation by Eberson:³ log $k_{\text{SET}} = \log k_d - \log \{1 + 0.2 \exp [\lambda/4(1 + (\Delta G^{\circ}/4))^2/RT]\}$, where k_d is the diffusion rate in Me₂SO (3.3 × 10⁹);¹¹ λ is the intrinsic barrier chosen from literature values^{3b,4} to give the best fit, and ΔG° is estimated from the redox potentials.^{3b} ${}^{f}E_{rd} = 0.4 \times (-1.185) = -0.474$ (vs SHE);¹⁰ $\lambda = 65$; Eberson^{3b} reports $\lambda = 63$ for the reaction of Ph₂CH⁻ with PhCH₂Cl. ${}^{g}E_{rd} = -0.72$ (Eberson¹²); $\lambda = 65$.

the reactions of members of the $9-R_2N-Fl^-$ ion family with $F_3C CH_2I$, a known electron acceptor⁶ (Figure 1; Table I).

The kinetics with F₃CCH₂I were first order in each reactant but remained so for only about 1 half-life, which is typical of the nonchain SET reactions that we have studied earlier.⁶ Reaction of the $9-R_2N-Fl^-$ ion family with Ph₂CHCl, which has a slightly more positive reduction potential (E_{rd}) than F₃CCH₂I (-1.2 vs -1.4), also gave a linear Marcus-type plot (Figure 2), but here the kinetics remained second order for several half-lives, and substitution products were formed in high yield with no indication of the presence of radical products.¹³ Comparison of log k_{obsd} with log k_{SET} , calculated according to the method of Eberson (Table I), shows a close correspondence of values for reactions of both F₃CCH₂I and Ph₂CHCl. This evidence suggests that both are reacting by SET mechanisms, F₃CCH₂I giving radical-type products⁶ and Ph₂CHCl giving S_N2-type products.

Surprisingly, PhCH₂Cl, which has a 0.8 V less positive E_{rd} (E_p) than does Ph₂CHCl, also gave a linear Marcus-type plot for reactions with 9-R₂N-Fl⁻ ions, and the correspondence between k_{obsd} and k_{SET} (Table I) is close enough to fall in the range that Eberson designates as "SET feasible".3b A similar appearing Marcus-type plot was obtained with *n*-BuBr ($E_{rd} = -2.1^{3b}$) and the log k_{obsd} – log k_{SET} values were 3–4, which is still in the "SET feasible" range.^{3b}

We conclude that the reactions of 9-R₂N-Fl⁻ ions with Ph₂CHCl are occurring by SET involving rapid coupling of radical pair intermediates, whereas those with PhCH₂Cl and n-BuBr are probably in the hybrid^{2a} or merged^{2b} region of a SET-S_N2 spectrum. Application of this test to other electrophiles is in progress.

Acknowledgment. We thank Tsuei-Yun Lynch for rate data with F_3CCH_2I and Craig A. Wilson for rate data with PhCH₂Cl. This research was sponsored by a grant from the National Science Foundation.

Molecular Hydrogen Complexes. 5. Electronic Control of η^2 -H₂ versus Dihydride Coordination. Dihydride Structure of $MoH_2(CO)(R_2PC_2H_4PR_2)_2$ for R = Et, *i*-Bu versus η^2 -H₂ for R = Ph

Gregory J. Kubas,* R. R. Ryan, and Clifford J. Unkefer

Los Alamos National Laboratory University of California Los Alamos, New Mexico 87545 Received May 26, 1987

Since their discovery,¹ new examples of transition-metal molecular-hydrogen $(M-\eta^2-H_2)$ complexes have been established at an increasingly rapid pace,² including several complexes previously formulated as classical hydrides (e.g., FeH₄(PEtPh₂)₃).³ Equilibrium between dihydrogen and dihydride ligands has been observed in solution,^{2a,2d} emphasizing that η^2 -H₂ complexes can be considered tautomers of hydrides and not merely arrested

⁽⁶⁾ Bordwell, F. G.; Wilson, C. A. J. Am. Chem. Soc. 1987, 109, 5470-5474.

⁽⁷⁾ Marcus plots log k_{obsd} vs $\Delta G^{o'}$; Figure 1 is a Marcus-type plot in the sense that, since E_{rd} is constant, changes in $E_{ox}(A^{-})$ are proportional to changes in $\Delta G^{o'}$. Over large ranges of $\Delta G^{o'}$ the Marcus equation predicts curvature, but over relatively small ranges in the endergonic region the curve is flat and essentially linear.⁸

⁽⁸⁾ Klinger, R. J.; Kochi, J. J. Am. Chem Soc. 1982, 104, 4186-4196. (9) Bordwell, F. G.; Bausch, M. J. J. Am. Chem. Soc. 1986, 108, 1979-1985.

⁽¹⁰⁾ The observed E_{rd} measured as a peak potential (E_p) has been multiplied by 0.4 to correct for the anodic shift caused by the rapid follow reaction.^{2a,3b}

⁽¹¹⁾ Gordon, A. J.; Ford, R. A. In The Chemist's Companion, A Handbook of Practical Data, Techniques and References; Wiley: New York, 1972; pp 6-7 and 137-138.

⁽¹²⁾ Eberson^{3a} reports $E_{rd} = -0.52$ V vs SHE_{Me2SO}. By applying $-\Delta G^{\circ}_{tr}(H_2O \rightarrow Me_2SO)$ for the proton, we converted this value to E_{rd} vs SHE_{aq} to be consistent with our E_{ox} values. The resulting value is ~40% of our measured E_{rd} .

⁽¹³⁾ In the reaction of 9-(i-Pr)2N-FI⁻ ion with Ph2CHCl, the presence of the persistent 9-(1-Pr)₂N-Fl^{*} radical ($\lambda_{max} = 450 \text{ nm}$)⁶ was not observed.

⁽¹⁾ Kubas, G. J.; Ryan, R. R.; Swanson, B. I.; Vergamini, P. J.; Wasserman, H. J. J. Am. Chem. Soc. 1984, 106, 451.
(2) (a) Kubas, G. J.; Unkefer, C. J.; Swanson, B. I.; Fukushima, E. J. Am. Chem. Soc. 1986, 108, 7000 and references therein. (b) Kubas, G. J.; Ryan, R. R.; Wroblewski, D. J. Am. Chem. Soc. 1986, 108, 1339. (c) Kubas, G. J. Acct. Chem. Res., in press. (d) Chinn, M. S.; Heinekey, D. M. J. Am. Chem. Soc. 1987, 109, 5865. (e) Bianchini, C.; Mealli, C.; Peruzzini, M.; Zanobini, F. Ibid. 1987, 109, 5548. (f) Bautista, M.; Earl, K. A.; Morris, R. H.; Sella, A. Ibid. 1987, 109, 3780. H.; Sella, A. *Ibid.* 1987, 109, 3780.
 (3) (a) Crabtree, R. H.; Hamilton, D. G. J. Am. Chem. Soc. 1986, 108,

^{3124. (}b) Hamilton, D. G.; Crabtree, R. H., submitted for publication. (c) Caulton, K. G.; Folting, K.; Huffman, J. C.; Koetzle, T. F.; Van Der Sluys, L. S. Abstracts of Papers, 194th National Meeting of the American Chemical Society. Washington, DC, Control 1987; INOR 353. (d) Reynoud, J.-F; Leblanc, J.-C.; Moise, C. Trans. Met. Chem. 1985, 10, 291.